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INTRODUCTION

The purpose of this report is to give a brief account and summary

of the research accomplishments under the present AFOSR Grant to

Texas A & M Research Foundation. The unsteady airload prediction

technique and an aeroelastic analysis of a cascade of staggered
blades in subsonic compressible flow developed under this research

grant are discussed . Several research papers and reports have been

published from the research conducted and a list of these papers

and the summaries are included in the Appendix.

Many researchers have devoted considerable effort towards predicting

the flow characteristics through the multiple stages of blades that
exist in axial flow compressors. The research efforts have been

concentrated on obtaining the aerodynamic loads utilized in the
design of more efficient blades. In addition to the need for

information about blade aerodynamic loading, flutter characteristics
also need to be determined. With the assumption of a two—dimensional

flow , the flow through a single row of blades is mathematically
equivalent to the flow through a staggered cascade of infinitely

1 2many airfoils. Early researchers , Whitehead , Kemp and Sears ,
and Schorr and Reddy3, assumed incompressible flow and developed

aerodynamic theories and computational schemes for predicting the

unsteady airloads on the blades for oscillatory freestream flow
and/or oscillating blades. An example is the work of Kemp and Sears2

who studied the problem of the unsteady lift generated on a reference

airfoil of a cascade. In their approach, they used an oscillatory

freestream flow. Their study considered the steady interaction

between blades but neglected the unsteady interaction and hence,
the effect of cascade spacing . Their approach was to express the

unsteady lift as a function of the design parameters , such as the
ratio of the airfoil chord and the disturbance wavelength , thus
enabling a designer to optimize the performance of a turbomachine
design instead of analyzing a particular blade arrangement. In

3another study , Schorr and Reddy treated the flow through a stag-

gered cascade of airfoils in which the effect of unsteady upstream

_ _ __ _  j



disturbances were included as in the case of unsteady or distorted

inlet flow conditions in an axial flow compressor. Their problem

was also formulated under the assumption of incompressible potential

flow and numerical results were obtained for oscillatory flow using an

approximate solution developed from the integral equations involved.

In addition, their solution yielded unsteady lif t coefficients for the
airfoils as a function of the frequency of the oscillations and for
different values of stagger and solidity of the cascade.

In an independent study, Jones and Moore4 studied the incompressible
flow about a cascade of oscillating airfoils at zero mean incidence.

In order to obtain a solution, they util ized a unique numerical
liftin g surface technique which differs from all other methods in
that it makes use of the velocity potential instead of acceleration

potential doublet distributions. Rao and Jones5 later applied this
technique to the oscilla tory flow about an airfoil of a staggered
cascade. Airload results obtained for several values of frequency ,

interbiade spacing and stagger angle, showed excellent agreement
with the results of Schorr and Reddy3.
Adopting a technique similar to that of Schorr and Reddy , Fleeter6

considered the effects of compressibility on both the fluctuating

lift and moment coefficients for cascaded airfoils having an upstream
non-uniformity . He obtained a solution for the time—dependent, two—

dimensional , partial differential equations which describe the per-
turbation velocity potential through an application of Fourier

• transform theory. The resulting integral solution equation was

evaluated numerically by a matrix inversion technique. The fluctuating

lift and moment coefficient variations were computed and represented

as a function of Mach number, cascade solidity , cascade stagger
angle, interblade phase lag, and reduced frequency . Jones and

Moore7 extended the velocity potential formulation to oscillating
two—dimensional airfoils in compressible flow. In their numerical

method, they replaced the slowly converging Hankel function series

by a rapidly converging exponential series. They studied the effects

of varying airfoil spacing , frequency, Mach number , and phase

V 2
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difference between adjacent blades. Variations in the aerodynamic

damping can become zero but never negative at certain discrete

V frequencies. This is a desirable characteristic with respect to

flutter due to bending. The results also indicated that the

pitching moment aerodynamic damping can become zero relative to

the blade quarter-chord axis, while also being zero at the critical

frequencies , and could be negative at the higher Mach numbers over a
wide range of frequencies of interest in flutter analysis. This

is an undesirable characteristic from the standpoint that it
increases the area of instability for torsional flutter. Rao and

Jones8 utilized the theory developed in Ref. 7 to determine the
airload and moment coefficients on a reference airfoil of a stag-
gered cascade of airfoils in subsonic flow. Circumferential dis—

torsion due to inflow conditions was expressed as an interbiade phase
lag. Results were obtained for several values of frequency , Mach
number , interblade spacing, stagger, and phase lag angles for both

V cases of oscillatory flows and oscillating blades. The oscillatory

flow results compared well with those of Fleeter.
In his study utilizin g compressible flow , Whi tehead9 presented
calculations for the torsional flutter of a cascade of unstalled

blades at zero mean deflection and subsonic Mach numbers. Whitehead
V found that the effect of increasing Mach number was favorable and

tended to suppress the flutter that was predicted by incompressible

theory.

In this report the general aerodynamic theory and the numerical

lifting surface theory is presented . An investigation is conducted

for a single degree of freedom system in torsion. The effect of

the flow and geometric parameters is evaluated in establishing

flutter boundaries and these results are compared with those of

Whitehead9 who used a completely different computational procedure
for calculating the aerodynamic derivatives . Additionally, a

3 general flutter program is applied for a two-degree of freedom

(bending-torsion) staggered cascade in subsonic flow. By utilizing

an iterative procedure which permits frequency variation , the flutter
frequency and the flutter speed of the reference airfoil are obtained

as a function of the cascade parameters.

3
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AERODYNAMIC THEORY

General

The governing equation for the unsteady , compressible , two—
dimensional flow of an isentropic , inviscid, irrotational f luid
is given in terms of its velocity potential by

= L. {L~. + ~~~~~ ~Q~) + 
. ~7 (~-_)] (1)

J where 4 is the perturbation velocity and

(2)

U is the freestream velocity. The respective perturbation velocity

components along the x a z axes are , u(4~) and
Assuming that u and w are small compared to U, Eqs. (1) and (2)

are combined to yield,

(3)
3x2 az 2 a2 at2 a axat

where M is the freestream Mach number and a is the speed of sound. V

The following non-dimensional coordinates and definitions are used:

X , Z=~~~~, T=~~~ (4)

P(x,z,t) = VL~ (x,z) e ~~~~~ (5)

where

(6)

4 
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When Eq. (3) is combined with Eq. (5), it reduces- to a two-dimensional

Helmholtz equation for the pertubation velocity in the transformed

coordinate system ,

v2~ + K 2 ’I~ = 0 (7)

M 2 tijwhere K — .

For a flow problem , the boundary conditions are usually prescibed .
For an isolated airfoil in compress ible, unsteady flow, the solution
to Eq. (7) can be derived by the application of Green ’s theorem .
A relation for the velocity potential at a given point, 

~~~~~
, is

given in terms of velocity potential distribution over the lift-

ing surface and its wake. Treating the lifting surface as a thin

• airfoil, the discontinuity in the velocity potential between the

upper and lower surfaces is expressed as a doublet distribution,

K(= 
~upper 

- 

~1ower~~ 
One such solution for an isolated airfoil

is given in Ref.7. The rel~tion between the downwash at any point,
p, on a thin reference blade on a staggered cascade in subsonic
flow and the modified doublet distribution K(X), is given as

2irW~ = K(x)L~ S0(X~-)C~ Z~ , D, H, a)dX (8)

where ,

= 

m=-~ 

eim~~~~
l
~ H~

2
~~ K 1 (Xp

_X+mD)2 + (mH_ zp)2J} 
(9)

and D = ~~ , ~ = !~, and a is the interblade phase lag. The blades

of the cascade are numbered m , with m = 0 as the reference airfoil.

Since S0 in Eq. (9) satisfies the wave equation in the form,

0
+ 

O
+ K

2
S = 0  (10)

ax 2 3z 2

S 
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f and in the limi t as ~~~~~ Eq. (10) may be rewritten in the form,

21TWp 

~j K [-5~~ 
+ K 2S IdX 

(11)

where,

s = — ~~‘( ~~-cD) 
- 

(2 )

V 

~ 
- 2 e 

~
J
~ C
p
_X+mD)2+&H2j½ 

H0 ~
KE (x _x+mD)2+(mH_D

)iJ 
(12)

The series involving Hankel functions (S 0 1 S1) in Eqs . (9 )  and
(12) have very poor convergence characteristics.  Therefore ,
these are replaced by an exponential series as shown in Refs. 10

and 11. However, it is important to understand that this trans-

formation from Hankel function series to exponential series is
valid only for an infinite cascade. Hence, it cannot be applied

to a finite cascade. The convergence of the exponential series

is so good, that the required computational time is less for a

cascade when compared to a two-dimensional isolated airfoil in

subsonic flow where it is required to use Hankel functions. The

transformed relations as given in Ref.7 are ,

~ —2 ir a (m)~~X —X ~ /S1 e p 13
• ° m=—~ [(*5_rn) 2_p 2]

and,

—2lTa(m)IX —x I/S
s = ~~~‘a(m)e ½ 

, for X~ >or < X (14 )
1 1(*5_m)2~~121

where,

a(m) = ( ( * 5 _ m ) 2 _p 2
~~~ ~ + i(*5—m)~ , for X~, >or < X (15)

6
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and, 

-

= 
a+cD 

, p = , and S = (D 2 +H 2
)

½ 
. (16 )

The exponential form of the series S0 and S1 not only converge
rapidly , but also provide directly the values of critical frequencies
as shown in Ref.7. Eqs.(13) and (14) will diverge whenever one

of the denominators vanishes and no solution to Eq. (11) would be

possible. The critical values of the parameter p for which the
analysis fails is given by,

p = 6, 1 ± 6 , 2 ± 6 , etc.

This phenomenon corresponds to a resonance condition at critical

frequencies which constitutes an infinite set of values of a para-
meter depending on flow and configuration characteristics at which

the aerodynamic function becomes infinite everywhere. Resonance

conditions are functions of Mach number, frequency , interbiade
spacing, stagger angle, and acoustic velocity. The1 represent

the condition at which self-induced aerodynamic forces are zero

and the blades act effectively as if they were in a vacuum.

Boundary Conditions

The downwash w(= w 1 e
lWT ) can be expressed in terms of (X ,Z) by

using Eq. (5),

w = = ~ue~~~~
(
~~
T) 

~~ (17)

Downwash can now be non—dimensionalized to give,

p IEX
W’ 

_ _ w e
3z 8U

For the oscillating blades with flapping and pitching motions

about the mid-chord position, the downwash boundary condition

is defined as ,

= U[iuz ’ + (1+iwx )c* ’] (19)

Li
_ _ _ _ _ _ _ _  J
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where z ’ and a ’ are the amplitudes in flapping and pitching res-
pectively. Since periodic motions were assumed, z and a are
defined as

V z = z e ~ Pt = z 1e~~~T (20)

a = a I elPt _ a1e~~
T (21)

The doublet distributions , Kn’Sf are complex and depend on z ’

and a’ for given values of w and M. A typical K~ will be of
the form

= a~ z’ + baa’ (22)

where a~ and b~ are complex quantities and depend on frequency,
Mach number , interblade spacing, stagger , and phase lag.

Numerical Procedure
- 

The numerical procedure developed in Ref. 7 is utlized. The wake

boundary condition is given by,

K(X) = Kte e~~
’~~~~

1
~ , (23)

where Kte is the doublet strength at the trailing edge (X=l).
When Eqs. (11) and (23) are combined , they can be expressed in
the form,

21rW~ = jK (X)[55~2 + K 2S J dX + KteI (24 )

where , 
. as

i fe
’’

~~~ K
t [~~

i + K 2 S
0J

dX

V 
= —s

1~ 
— ivs0~ 

— ~
2 ( 1M2)P (25)

lc._’ 5~~ 2 (m) (l~Xp)/S
P = - ~~

) (26)
2ira (m )+ivs][(uS~m)

2—p 2]

8
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2 2 11/2 Hand a(m) = [(6_m ) - p j - i(6-m)~~. The symbols S0~ and S1~
represent 

~~ 
and S1 respectively at the trailing edge.

The airfoil is divided into N equal strips and K is assumed to be

~~~ a constant over the nth strip, where n = l,2,3...,N. Let 2B be
the width of each strip and X~ denote the center of the nth strip.
In Eq. (24), X~, and are replaced by X1 and W~ respectively, where
i refers to the ith strip. Hence Eq. (24) will then be given by,

N

21TW~ =~~~~
K tSi~~~

_X
n
_
~~ 

- S1(X1-X~+B) + 2K 2BS0(X~
_X~ )J

n=l

+ Kte 1(X.), where i = l,2,..,N. (27)

When X. = X , S is evaluated by integrating the exponential form
1 n o

of S0 over the interval Xn
_B < X < X +B. For other intervals,

X.~~X and S can either be found by integration or be taken as the
1 fl 0

mean value of S0 over the interval. 
Kte 

can be expressed as a

function of KN using the wake 
condition. This relation is given

by,
_ _ _ _ _ _ _ _ _ _ _ _  

V

Kte = -ivB (2 8)
ivB+e

For a given geometry and flow conditions, the numerical terms in

Eq.(27) can be evaluated by using Eqs.(13), (14), (25), and (26).

For a known set of W1
1 s, Eq. (27) reduces to a system of N equations

with N unknowns, K1, K2, . ... ,K~ , when it is combined with Eq. (28).
It is assumed that W. is known over the airfoil. In Eq. (27), this

1
represents a set of linear algebraic equations given by,

2 n{W~ ) = [A]~~K} . (2 9)

Therefore , knowing the values of { w
1
} and [A] allows for the

determination of the doublet distribution , (K) .

9 
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Aerodynamic Derivatives

• 
Euler ’s equation of motion in unsteady flow is given as,

V au au (30)

In terms of the upper and lower velocity potential and pressure

on the airfoil, Eq. (30) can be shown to be,

+ U~~ = (31)

where k(x) = Since the lift per unit chord per unit span
is ~ (x) = (P~—p~)~ Eq. (31) becomes,

+ U~~ ) = ~ (x) . (32)
Now from Eq.(5),

k ( x ) = 4
~u~~~ 

U9~(~*u
_
~~ )e

i(EX+wT) (33a )

• 
V 

k (X ) = U~K(X)e
1 X

~~
T) 

(33b)

where K(X) = (
~
?u
_
~ p)~ 

Equations (32) and (33) are combined to

yield,

aK (X )1 i(cX+wT)‘
~ (X) = pU2 [ivK (x + —ax 1e (34)

where v (U/~~~~2 Eq.(34) is valid on the airfoil surface , -1~ 
X ~1.

In the wake region, no pressure discontinUities are allowed 
to

exist and hence,
ivK (X) + 

aK (X) 
= 0

must be satisfied when X=l .

When values of Kn have been obtained, the local lift , ~. (x), at a
point X is given by Eq.(34). If ~ is substituted for Ke

1
~~~, then

• 

V 

= (iw~ + ~~)e
1
~
T (36a)

~ (X) 
(i~i~ + .!~~e

tPT 
. (36b)

pU2&

10
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The lift L(= Lt e~~
t) and the nose-up pitching moment about the

mid-chord axis M( = MI e1Pt ) are given by,
1

= 

~te + iwf i~dX = CLZ Z ’ + CLa~
• and , - —:i.

1 1
M’ 

= j~ + (j~cix 
- XKdX = C z’ + C a ’ (38)

pU2t2 te / .~ 
mz ma

—1 —1

where C~~ , C~~ , Cmz I and Cm are the aerodynamic derivatives.

These are usually complex and depend on the geometry and flow char—

acteristics.

• EQUATIONS OF MOTION

V The equations of motion for a two degree—of—freedom (bending

torsion) system of an airfoil are V

ML~ + S& + K~ R.z = — PU
2 .Q (CRZ z + C~a

a) (39)

S2~ + I~i + K c *  = PU 2 ~~2 (Cmz z + Cm a) (40)

where,

- 

M =fdm = blade mass per unit span,

S =fr dm = blade static moment about elastic axis ,

I = r dm blade mass moment of inertia about elastic
J axis ,

£ — semi-chord lengti of the blade ,

a = flapping motion ,

= pitching motion , V

• bending stiffness of the blade

— tors ional stiffness of the blade . 
V

11
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Assuming simple harmonic motion,

Z z I e~Pt = zI e~
WT (41a)

a = a~ e~ Pt 
= cx I e~~

0
~
T (41b)

and separating the aerodynamic derivatives into real and imaginary

parts ,

C2,~ 
= Ctzr + iC9,zi (42a)

C
~a 

= CL R  + 1CL I  ( 42 b)

Cm = CmzR + iCmzi (42c)

C = CmaR + iCmai (42d)

Eqs. (39) and (40) reduce to

(LK
~ 

— M2.p 2 + pU29.C
~ z
)z’ + (pU 2WLa~

Sp2)a’ V

(43)

(Pt1 22’2Cmz + Stp
2)z’ + (K~ 

— PU 2
P
2Cma~ Ip 2 ) a ’ = 0

Equations (43) are a set of two linear, homogenous equations in
z’ and a ’. For this system to have a nontrivial solution, the

coefficient determinant of of z ’ .and a’ must be equal to zero.

( R K
~ 

— M2.p2 + PU 2LCLZ) (PU 2LC La — Sp2)

(44 )

~
(Cmz PU 2

~
2 + SLp 2 ) (Ka 

— P172 &2Cma — 1p 2 )

This determinant is referred to as the flutter determinant and

the solution gives the flutter frequency. However, a direct
solution cannot be obtained since the arodynamic derivatives
are functions of the reduced frequency . Since the aerodynamic
derivatives are complex quantities, the determinant can be
expressed into two parts, real and imaginary . After expanding the
flutter determinant and substituting appropriate values of Eqs. (42),
the real and imaginary parts of the flutter determinant become ,

12
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(LK zKa)~~
2 

- (tK
~
(I + CmaR) + Ka(M& 

- 2L CLzR)]p

+ [ (MU — S2 t) — 2
~~~(IC LzR ML 2 CmaR + StCmzR - StCL R )

— 
p2t7 (C C — C

~zi
Cm i  + C&aiCmzi 

— C& RC R~
3 0

[KaCpzi 
- L2K C  + [SR

~
C
~ai 

— IC~~ 1 + M
~

2 CrnaI

9.’.
- SLC 1 + 

•2_(C
9. RCinzI + C9. 1C R 

- C9. RC I 
- CLzICmaRH = 0

where ~ = 1~. If the real and imaginary parts are set to zero ,
p

solutions P1 and P2 can be obtained for the real part and P3 for
the imaginary part. For an assumed value of W , if one of the
solutions , P1 or P2, of the real part is equal to the solution P3
of the imaginary part, then this w corresponds to the flutter fre-

quency. However, the aerodynamic derivatives are functions of the
Mach number and the reduced frequency . The flutter problem can only

be solved after the aerodynamic derivatives are evaluated. It is
necessary to assume a Mach number and a reduced frequency and test
whether flutter occurs at these values. If the test results are

negative, then it is necessary to iterate on reduced frequency

until a flutter case occurs at these values. If the two . speeds
are not equal, then it is necessary to iterate on Mach number until

the flutter Mach number is equal to the assumed Mach number.

RESULTS AND DISCUSSION

A single degree-of-freedom analysis for torsion was performed on
cascade of blades using the lifting surface aerodynamic theory
discussed in a previous section. After obtaining the results,

13
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a comparison was made to the results obtained by Whitehead9 who
V 

employed a technique developed by Smith12 to obtain aerodynamic
forces and moments. Whitehead distinguished a region of flutter

that he termed as “sub—critical flutter” , which occurs in a regime

where any acoustic waves generated cannot propagate upstream and

downstream. Figure 1 shows the results that Whitehead obtained

for a space—to—chord ratio of 1.0 , a stagger angle of 450
, a position

of the torsional axis at 58.8% chord, and an interbiade phase angle

of 60°. The imaginary part of the moment coefficient is plotted

against the reduced frequency parameter , W . Also, shown in Fig.l,

is a plot of the imaginary part of the moment coefficient from the

present calculations. As can be seen, the results obtained by the
Rao/Jones lifting surface technique agree closely with the reults

obtained by Whitehead . The imaginary part of the moment coefficient V

is capable of adding energy to the system when it is negative.

Assuming that there is no mechanical damping involved , flutter will
occur as a net result of energy being added tO the system. How-
ever , in reporting his results , Whitehead found that he had signifi-
cant mechanical damping and had to allow for an average value as V

a flutter limit. This limit is shown in Fig.1. If the value of the

imaginary part of the moment coefficient is below this line, the

flutter is predicted . The point where it is just possible for the
flutter to exist is referred to asa flutter boundary . Whitehead

observed that as the Mach number is increased , the points at which

flutter is just possible move to progressively lower values of the

frequency parameter. This corresponds to higher fluid velocities

or to lower blade stiffnesses. The effect of Mach number is there-

fore highly significant. • V

Figure 2 shows the frequency parameter below which torsional flutter

is just possible and has been plotted against blade axis position.

Once again, a comparison is made by utilizing the Rao/Jones technique

and Whitehead/Smith technique . The results are in close agreement
and concur with Whitehead’ s observation that increasing the Mach

14
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• 0.14 — Lifting Surface Theory

• Whitehead/Smith Technique
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Figure 1. Torsional Flutter Boundaries
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V Figure 2. Sub-Critical Flutter
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number is favorable and that the worst position for the torsional

axis is around f i f t y  to seventy percent chord.
A numerical investigation for two degrees—of-freedom was conducted
using the unsteady airlods program interfaced with the flutter

analysis program. The geometric and structural properties of the

cascade reference air~!oi l used in this analysis were calculated
from the data obtained from Refs.13, 14, and 15. The properties
used are:

Static moment about 
_ 4

V 
V

the elastic axis V S = 5.35x10 slug—ft

Moment of inertia about -5 2the elastic axis I = 6.316xl0 slug—ft

Mass per unit span M = 0.0214 slugs

Bending natural frequency = 1000 rad/sec
Torsional natural frequency Wa = 2000 rad/sec

Blade semi-chord length 9. = 0.0833 ft
• Figure 3 represents the results obtained for the flutter analysis

for various values of interbiade spacing (S = 1.09., 1.19., 1.29., and

l.3t) while the interblade stagger angle was varied from 44° to 60°.

Over the range of values considered , it can be seen from Fig.3

that as the interblade stagger angle is L.creased , the flutter
Mach number also increases. This indicates that an increase in
the interblade angle would be beneficial in preventing flutter at
the lower Mach numbers. This trend is in general agreement with
the results reported in Ref. 16.
Figure 4 shows the effect of varying the interbiade spacing for
various interblade stagger angles (A = 46°, 52°, 56°, and 60°).
The trend of the curves shows that as the interblade spacing
increases for a g iven interblade stagger angle, the flutter Mach
number decreases. This indicates that increasing the interblade
spacing will have a destabilizing effect on the cascade of blades.
This same trend was also observed in Ref. 16.
A summary of the results of the two degree-of-freedom flutter
analysis is presented in the Table.

17
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Flutter
Mach

Number

0.70

• s = 1 .0L

0.60 - 
S = 1.19.

0.30

0 2 0  a. 
44 0 46° 48° 50° 52° 540 56° 58° 60°

A Interbiade Stagger Angle

Figure 3. Effect of Interbiade Stagger Angle on
Flutter Speed
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Figure 4. Effect  of Interblade Spacing on
Flutter Speed
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TABLE Summary of Two Degree-of-Freedom
Flutter Analysis

Interbiade Interblade Flutter Flutter Interblade
Stagger Spacing Mach Reduced Phase
Angle Number Frequency Lag

A S M U) a
(Degrees) (Degrees)

44 1.02. 0 .4087  0 .4539  —30
46 1.09. 0.5028 0.3671 —30
48 1.09. 0.5497 0.3347 —30
50 1.09. 0.5676 0.3234 —30
54 1.09. 0.6109 0.2988 —30
55 1.09. 0.6216 0.2935 —30
56 1.09. 0.6300 0.2888 —30
60 1.02. 0.6445 0.2809 —30
46 1.19. 0.3783 0.4907 —30
52 1.12. 0.5561 0.3301 —30
56 1.19. 0.5843 0.3128 —30
58 1.19. 0.5818 0.3138 —30

• 60 1.19. 0.6058 0.3001 —30
50 1.29. 0 .4300  0 .4305  —30
52 1.29. 0.4809 0.3837 —30
56 1.29. 0.5336 0.3440 —30
58 1.29. 0.5406 0.3390 —30
60 1.29. 0.5501 0.3325 —30

• 52 1.39. 0.4045 0.4580 —30
56 1.39. 0.4715 0.3911 —30
58 1.39. 0.4757 0.3872 —30
60 1.39. 0.4990 0.3682 —30
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CONCLUSIONS AND RECOMMENDATIONS

A unique velocity potential lif ting surface technique has been
developed and used to determine the unsteady airloads for an
infinite cascade of staggered blades in subsonic flow. The

unsteady airloads were then utilized in a FORTRAN program to
• perform a flutter analysis for a single degree-of—freedom system

in torsion and for a two degree-of-freedom system in bending and

torsion.

Several geometric and flow parameters of a staggered cascade were

varied over a specific range of values and were found to influence
the cascade in the following manner: 

V

1. If Mach number is increased , it will have an increased
damping effect on the stability of the cascade in
pitching motion.

2. If interblade spacing is increased , the damping decreases
• while still below the f i rst critical frequency is equal

to zero at the f i r s t  critical frequency.

3. As interbiade stagger angle increases, the lowest cri-
tical frequency decreases.

4. As interblade phase lag is increased with increasing
reduced frequency , the damping will decrease rapidly to
zero for an interblade phase lag of 180 degrees .

When the cascade was analyzed for a single degree-of—freedom

system in torsion, results were found to compare favorably with
the results obtained by Whitehead for flutter boundaries. A com-

parison of the lif ting surface technique employed by Rao and Jones
and a different technique utilized by Whitehead in determining
torsional flutter , were shown to be in agreement in indicating that
increasing Mach number is a desirable condition from the stand-
point of flutter.

The developed computer program is general and is capable of
predicting f lut ter  analysis of a two degree—of—freedom system of
an infini te  cascade in subsonic flow . It was concluded that
increasing interblade stagger angle would be beneficial in pre-
venting flutter at low Mach numbers while an increase in interblade

V 

spacing would produce a destabilizing influence on the cascade of
blades.
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While a new flutter program was developed to determine the cascade

• 
- flutter speed and frequency , only a limited range of values were

analyzed. The program uses very efficient techniques in computing
unsteady airloads, the flutter frequency , and the flutter speeds.
Further investigation should be conducted over a large range of

I cascade parameter values for different geometric configurations,

l efore one can attempt to make general conclusions.

I

F
I
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APPENDIX - PUBLISHED RESEARCH PAPERS AND REPORTS

1. Kronenberger, Jr. L., “Flutter Analysis of a Cascade of
Staggered Blades in Subsonic Flow,” M.S. Thesis, Texas
A&M University, December 1977.
The purpose of the report is to utilize a numerical lifting
surface theory developed by Rao and Jones to predict the
unsteady airloads on a cascade of staggered blades in sub-
sonic compressible flow. An investigation is conducted to
determine the effec t on the unsteady airloads when parame-
ters such as reduced frequency, interbiade staggered angle
interblade spacing , and interblade spacing, and interblade
phase lag are varied over a specific range of values. Once
the unsteady airloads have been determined, they are used
to perform an aeroelastic analysis of the staggered cascade
for a single degree of freedom in torsion and a two degree—
of-freedom system in bending and torsion.

Results of the single degree of freedom analysis yield flutter
boundaries. These are compared to results obtained by
Whitehead who used a d if f e r e n t  technique for  calculating trie
unsteady airloads on a finite cascade. A new general flutter
program is developed for the two degree-freedom-system. The
airloads are used as forcing functions in the resulting two
Lagrangean equations of motion representing the bending and
torsional degrees of freedom. The iterative procedure of the
flutter program yields the flutter frequency and speed of the
cascade reference airfctil as a function of the cascade para-
meters.

2. White, G.P., “Flutter Analysis of a Cascade of Rotor Blades,”
Presented at the AIAA 13th Annual Meeting and Technical Display ,
January 1977; also presented at the 24th Annual AIAA South-West
Student Paper Competion (won the First Place Award in the Under-
graduate Division), April 1976.

A classical two-dimensional , bending-torsion flutter analysis
of a reference airfoil in a cascade of infini te blades is per-
formed. The unsteady airloads on the reference airfoil are
predicted using a numerical lifting surface theory. Several
cascade and flow parameters such as interbiade spacing, stagger,
phase angle between blades , Mach number , and frequency are
investigated. The bending-torsion flutter speed of the cascaded
reference airfoil is studied as a function of the cascade and
flow parameters and the results are compared with that of an
isolated airfoil .

3. Jones, W.P. and Moore, J.A., “Aerodynamic Theory for a Cascade
of Oscillating Airfoils in Subsonic Flow,” AIAA Journal, Vol. 14,
No. 5, May 1976, pp. 601—605.

The theory is developed in terms of the velocity potential
rather than the acceleration potential, and a brief outline is

V 
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given of the simple numerical technique used. The effects
of varying airfoil spacing , frequency , Mach number , stagger
angle, and phase difference between adjacent airfoils are
discussed. Particular attention is given to variations in the
aerodynamic damping for pure vertical translational and pitching
motions. It is shown that the translational damping can become
zero at certain discrete frequencies but that it never becomes
negative. The pitching moment damping , however , can become nega-
tive over a wide range of frequenicies of practical interest.
The airfoils are assumed to be zero mean incidence.

4. Rao, B.M. and Jones, W.P., “Unsteady Airloads on a Cascade of
Staggered Blades in Subsonic Flow ,” Presented at the 46th Meeting
of the AGARD Propulsion and Energetics Panel, Unsteady Phenomena
in Thrbanachinery, September 1975. AGARD-CP-l77.
The Jones-Moore numerical lifting surface technique is applied
to the theory developed by Jones to predict the airloads and
moments on an airfoil of a staggered cascade of rotor blades in
subsonic flow. Circumferential distortion due to inlet flow
conditions is expressed as an interbiade phase lag and both
cases of oscillating airfoils and oscillatory inflow were consi-
dered. Results obtained for several values of frequency , stagger
angle, blade spacing, and interblade phase lag.

5. Rao, B.M. and Jones, W.P., “Unsteady A irloads on a Cascade of
Staggered Blades in Incompressible Flow ,” Proceeding of a
Workshop on Unsteady Flows in Jet Engines , Sponsored by the
Project Squid (US Navy), AFOSR, and UARL , November 1974.
The Jones—Moore numerical lifting surface technique is applied
to predict the airloads in oscillatory flow on an airfoil of a
staggered cascade in incompressible flow. Circumferential dis—
torsion due to inlet flow conditions is expressed as a phase lag 

•

between blades as suggested by Schorr and Reddy. Also, the
results are obtained for one combination of stagger angle and
blade spacing at several phase lag angles and frequencies.
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